Submodule Algebras

نویسندگان

  • Yoshiki KINOSHITA
  • Andreas KNOBEL
چکیده

The complement operation on modules has not been argued so far as we know. We observe that it plays an important role in software maintenance, as well as join and meet operations. A de nition of a module and operations on them is given in category theoretic terms; we adopt well-known characterization of complement as a left adjoint to join. The de nition is rst given locally and then extended to a global context using the standard technique of Grothendieck construction. In order to show that our ideas give denotations to software modules, we take the category of algebraic theories as our `running' example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Functional Equations for Submodule Zeta Functions Associated to Nilpotent Algebras of Endomorphisms

We give a sufficient criterion for generic local functional equations for submodule zeta functions associated to nilpotent algebras of endomorphisms defined over number fields. This allows us, in particular, to prove various conjectures on such functional equations for ideal zeta functions of nilpotent Lie lattices. Via the Mal’cev correspondence, these results have corollaries pertaining to ze...

متن کامل

Primary decomposition of ideals (submodule) in BCK-algebras

In this paper, we investigate the ideal theory in BCK-algebras and we define the notions of primary and P -primary ideals. Then we show that in bounded implicative BCK-algebras, if an ideal has a primary decomposition, then it has a reduced primary decomposition. In the follow, we extend the above concepts to X-modules (Extended BCK-modules) and we introduce the notions of primary and P -primar...

متن کامل

Deformations of quadratic algebras and the corresponding quantum semigroups

Let V be a finite dimensional vector space. Given a decomposition V ⊗ V = ⊕i Ii, define n quadratic algebras (V, Jm) where Jm = ⊕i6=mIi. This decomposition defines also the quantum semigroup M(V ; I1, ..., In) which acts on all these quadratic algebras. With the decomposition we associate a family of associative algebras Ak = Ak(I1, ...In), k ≥ 2. In the classical case, when V ⊗ V decomposes in...

متن کامل

Ela Graded Triangular Algebras

The structure of graded triangular algebras T of arbitrary dimension are studied in this paper. This is motivated in part for the important role that triangular algebras play in the study of oriented graphs, upper triangular matrix algebras or nest algebras. It is shown that T decomposes as T = U + ( ∑ i∈I Ti), where U is an R-submodule contained in the 0-homogeneous component and any Ti a well...

متن کامل

Characterizing C*-algebras of Compact Operators by Generic Categorical Properties of Hilbert C*-modules

B. Magajna and J. Schweizer showed in 1997 and 1999, respectively, that C*-algebras of compact operators can be characterized by the property that every norm-closed (and coinciding with its biorthogonal complement, resp.) submodule of every Hilbert C*-module over them is automatically an orthogonal summand. We find out further generic properties of the category of Hilbert C*-modules over C*-alg...

متن کامل

Amenability for dual Banach algebras

We define a Banach algebra A to be dual if A = (A∗) ∗ for a closed submodule A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007